(递推)常用递推式总结及实现

常用递推式

后面问题的解可以由前面问题的解递推而来,每一项都与前面若干项有一定关联。它是一种用若干步可以重复的简单运算来描述复杂问题的方法。

爬楼梯和兔子问题和斐波那契: f ( n ) = f ( n − 1 ) + f ( n − 2 ) ; f ( 1 ) = 1 , f ( 2 ) = 1 f(n)=f(n-1)+f(n-2) ; f(1)=1,f(2)=1 f(n)=f(n1)+f(n2);f(1)=1,f(2)=1
直线分割平面: f ( n ) = f ( n − 1 ) + n f(n)=f(n-1)+n f(n)=f(n1)+n
n封信,n个信封,所有信装错了信封可能情况总数(错排公式):
f ( n ) = ( n − 1 ) ( f ( n − 1 ) + f ( n − 2 ) ) ; f ( 1 ) = 0 , f ( 2 ) = 1 f(n)=(n-1)(f(n-1)+f(n-2)) ;f(1)=0,f(2)=1 f(n)=(n1)(f(n1)+f(n2));f(1)=0,f(2)=1
杨辉三角:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
f [ i ] [ j ] = f [ i − 1 ] [ j − 1 ] + f [ i − 1 ] [ j ] ; ( j 不 为 1 的 时 候 ) f[i][j]=f[i-1][j-1]+f[i-1][j];(j不为1的时候) f[i][j]=f[i1][j1]+f[i1][j];(j1)
f [ i ] [ j ] = 1 ( j 为 1 的 时 候 ) f[i][j]=1(j为1的时候) f[i][j]=1j1

实现递推:

一维递推以斐波那契为例:

#include <iostream>
using namespace std;
const int N = 1e3;
typedef long long ll;
ll f[N];

int main() {
    int n;
    cin>>n;
    f[0]=f[1]=1;
    for(int i=2;i<=n;++i){
		f[i]=f[i-1]+f[i-2];
    }
    cout<<f[n]<<endl;
    ll a=1,b=1,c=1;
    for(int i=2;i<=n;++i){
        c=a+b;
        a=b;
        b=c;
    }
    cout<<c<<endl;
    return 0;
}

二维递推以杨辉三角为例:

#include <iostream>
using namespace std;
typedef long long ll;
const int N = 55;
ll f[N][N];
void init(){
    for(int i=1;i<N;++i){
        for(int j=1;j<=i;++j){
			if(j==1){
				f[i][j]=1;
            }
            else{
				f[i][j]=f[i-1][j-1]+f[i-1][j];
            }
        }
    }
}
int main () {
    init();
    int n,m;
    cin>>n>>m;
    cout<<f[n][m]<<endl;
    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:白松林 返回首页